Übergangsmetall–Heteroallen-Komplexe

XVIII *. Zweikernige Thioacyl-Komplexe des Eisens

Wolfram Ziegler, Henning Umland und Ulrich Behrens*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, 2000 Hamburg 13 (B.R.D.)

(Eingegangen den 28. September 1987)

Abstract

The structure of the PPh₄⁺ salt of the anionic, dinuclear thioacyl complex $[Fe_2(C_{11}H_{19}S)(CO)_6]^-$ (3) was determined by X-ray crystallography. Complex 3 reacts with NO⁺ to give a neutral dinuclear compound $[Fe_2(C_{11}H_{19}S)(CO)_5NO]$ (4). The phosphane PPh₃ reacts with complex 4 to give the substitution product $[Fe_2(C_{11}H_{19}S)(CO)_4(NO)PPh_3]$ (5), the structure of which was determined by a X-ray diffraction study. Reaction of complex 4 with the diphosphane Ph₂PCH₂PPh₂ yields the bridged compound $[Fe_2(C_{11}H_{19}S)(CO)_3(NO)(Ph_2PCH_2PPh_2)]$ (6).

Zusammenfassung

Die Struktur vom PPh₄⁺-Salz des anionischen, zweikernigen Thioacyl-Komplexes $[Fe_2(C_{11}H_{19}S)(CO)_6]^-$ (3) wurde röntgenographisch bestimmt. Komplex 3 reagiert mit NO⁺ zu einer neutralen, zweikernigen Verbindung $[Fe_2(C_{11}H_{19}S)(CO)_5NO]$ (4). Das Phosphan PPh₃ reagiert mit Komplex 4 zu einem Substitutionsprodukt $[Fe_2(C_{11}H_{19}S)(CO)_4(NO)PPh_3]$ (5), dessen Struktur röntgenographisch bestimmt wurde. Die Reaktion des Komplexes 4 mit dem Diphosphan Ph₂PCH₂PPh₂ ergibt die verbrückte Verbindung $[Fe_2(C_{11}H_{19}S)(CO)_3(NO)(Ph_2PCH_2PPh_2)]$ (6).

Einleitung

Vor einiger Zeit beschrieben wir den Thioketen-Eisen-Komplex $[Fe_2(C_{11}H_{18}S)-(CO)_6]$ (2), der in quantitativer Ausbeute aus dem stabilen Thioketen 1 und $Fe_2(CO)_9$ entsteht [2,3]. Mit Hydridionen H⁻ (aus NaBH₄) reagiert der Cluster 2

^{*} XVII. Mitteilung siehe Ref. 1.

(1)

zum anionischen μ - η^2 -Thioacyl-Komplex 3, der sich in Form des luftstabilen Tetraphenylphosphonium- bzw. Tetraethylammoniumsalzes isolieren lässt [3].

In der vorliegenden Arbeit werden die röntgenographische Strukturbestimmung des PPh₄-Salzes des Komplexes 3 und die Reaktionen von Komplex 3 mit NO^+ und Folgeumsetzungen mit Phosphanen beschrieben.

Präparative Ergebnisse und spektroskopische Untersuchungen

 PPh_4 [Fe₂(C₁₁H₁₉S)(CO)₆] (3a) reagiert mit NO⁺BF₄⁻ in Methylenchlorid zu dem neutralen Nitrosylkomplex 4. Im Gegensatz zum H⁺-Ion, das den Komplex 3 an C(1) unter Bildung eines Thioaldehyd-Komplexes angreift [4], substituiert das NO⁺ eine isoelektronische CO-Gruppe. Der Nitrosylcluster 4 fällt nach säulenchromatographischer Aufarbeitung in 20% iger Ausbeute als hexanhaltiges Öl an. In besserer Ausbeute (34%) entsteht Komplex 4 bei der Umsetzung des Tetraethylammonium-Salzes **3b** mit NO⁺ BF₄⁻. Hierbei kann der Nitrosylkomplex **4** als schwarzer Feststoff isoliert werden.

Triphenylphosphan reagiert mit 4 unter Substitution einer CO-Gruppe zum Thioacyl-Komplex $[Fe_2(C_{11}H_{19}S)(CO)_4(NO)PPh_3]$ (5), der in guter Ausbeute in Form von schwarzen Kristallen erhalten wird. Die Röntgenstrukturanalyse zeigt, dass NO- und PPh₃-Ligand am selben Eisenatom koordiniert sind und eine halbverbrückende CO-Gruppe auftritt [ν (CO) 1875 cm⁻¹; KBr]. Das ditertiäre Phosphan Bis(diphenylphosphino)methan (dppm) reagiert mit Verbindung 4 unter Substitution von zwei CO-Gruppen zum verbrückten Komplex 6, der in Form von dunkelrotbraunen Kristallen erhalten wird.

Die spektroskopischen Daten [IR, ¹H-, ¹³C-, ³¹P-NMR) der Komplexe 3 bis 6 sind im Experimentellen Teil aufgeführt. Im anionischen Thioacyl-Komplex 3 sind die Banden der CO-Streckschwingungen gegenüber dem neutralen Thioketen-Komplex 2 wegen der durch die negative Ladung im Cluster erhöhten Elektronendichte am Eisen deutlich zu niedrigeren Wellenzahlen verschoben (ca. 50 cm⁻¹). Die Substitution von CO durch NO⁺ bei Komplex 4 verschiebt die ν (CO)-Banden um etwa 80 cm⁻¹ zu höheren Werten. Der Ersatz von CO-Gruppen durch Phosphoratome bei den Komplexen 5 und 6 führt dann wieder zu einem Absinken der Wellenzahlen für die CO-Streckschwingungen.

Die ¹H-NMR-Spektren der Thioacyl-Komplexe 3 bis 6 sind nicht sehr aussagekräftig. Für das symmetrisch gebaute Anion 3 findet man zwei Resonanzen

für die Methylgruppen des Thioketenliganden; die unsymmetrischen Neutralkomplexe 4, 5 und 6 weisen vier Methylsignale auf. Das H-Atom an C(2) erscheint um 3 ppm und ist durch Kopplung mit den Phosphoratomen bei 5 und 6 zum Dublett bzw. Quartett aufgespalten.

Im ¹³C-NMR-Spektrum erscheinen die Signale für C(2) bei 65 ppm. Die Resonanzen für C(1) verschieben sich von **3a** (108.8 ppm) über **4** (136.7 ppm) nach **5** (144.6 ppm) hin zu tieferem Feld. Für den anionischen Komplex **3** beobachtet man nur ein Signal für die sechs CO-Gruppen (217.1 ppm). Der NO-Komplex **4** weist für die Fe(CO)₃-Gruppe ein Signal bei 209.6 ppm und für die Fe(CO)₂NO-Gruppierung zwei Signale bei 215.5 und 208.4 ppm auf. Beim PPh₃-Komplex **5** erscheint die Resonanz der Fe(CO)₃-Gruppe als breites Signal bei 208.4 ppm und das Signal für die Fe(CO)(NO)PPh₃-Gruppierung als Dublett bei 227.8 ppm.

Röntgenographische Untersuchungen *

(a) $PPh_4^+ [Fe_2(C_{11}H_{19}S)(CO)_6]^- (3a)$

Geeignete Einkristalle des Salzes 3a wurden durch Abkühlen einer Lösung der Substanz in einem Methanol/Wasser-Gemisch (1/1) auf 0°C erhalten.

Kristalldaten. C₄₁H₃₉Fe₂O₆PS; Kristallgrösse 0.9 × 0.5 × 0.3 mm³; triklin, $P\bar{I}$, *a* 1048.1(2), *b* 1280.5(3), *c* 1499.6(3) pm, α 87.88(2), β 87.49(1), γ 76.18(2)°, *V* 1952(1) × 10⁶ pm³, Z = 2, d(ber.) 1.37 g cm⁻³, lin. Absorptionskoeff. μ 8.2 cm⁻¹.

Auf einem automatischen Vierkreis-Einkristalldiffraktometer wurden 5016 unabhängige, signifikante Reflexe $[F > 4\sigma(F); Mo-K_{\alpha}$ -Strahlung, Graphitmonochromator, $\theta/2\theta$ -Scan im Bereich 5° < 2 θ < 48°] gemessen. Wegen der Grösse des Kristalls wurde eine numerische Absorptionskorrektur vorgenommen. Die Lösung der Struktur erfolgte über eine Patterson-Synthese, die die Lagen der beiden Eisenatome und des Schwefelatoms lieferte. Die Phosphor-, Sauerstoff- und Kohlenstoffatomlagen konnten ebenso wie die Lage des Atoms H(1) den nachfolgenden Differenz-Fourier-Synthesen entnommen werden. Alle Atome bis auf Wasserstoff wurden mit anisotropen Temperaturfaktoren verfeinert. Die Lagen der Wasserstoffatome H(2) bis H(39) wurden berechnet (C-H-Abstand 108 pm; gemeinsamer, isotroper Temperaturfaktor jeweils für aromatische und aliphatische H-Atome). Die Position des Wasserstoffatoms H(1) wurde verfeinert (isotroper Temperaturfaktor). Es ergab sich ein abschliessender R-Wert von R = 0.033 ($R_w =$ 0.035; Gewichtung $w = (\sigma_F^2 + 0.0003 \cdot F^2)^{-1}$; Programmsystem SHELX [5]). Die Atomkoordinaten, ausgewählte Bindungslängen und -winkel finden sich in Tabelle 1 und 2; Figur 1 zeigt eine SCHAKAL-Zeichnung [6] des Salzes mit Angabe der Atomnumerierung.

Das Anion des Salzes 3a ist der erste negativ geladene Thioacyl-Komplex. Die Strukturbestimmung bestätigt, dass der Angriff des Hydridions am C(2)-Atom des Thioketen-Komplexes 2 stattgefunden hat. Dadurch bleibt die tetraedrische, clusterartige Anordnung der Atome Fe(1), Fe(2), S und C(1) erhalten. Im Gegensatz

^{*} Die jeweils vollständigen Datensätze wurden beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter der Nr. CSD-52679 hinterlegt und können von dort unter Angabe der Hinterlegungsnummer, der Autoren und des Zeitschriftenzitats angefordert werden.

Tabelle 1 Atomkoordinaten von **3a**

Atom	x/a	y/b	z/c
Fe(1)	0.45738(4)	0.18649(3)	0.35840(2)
Fe(2)	0.33923(4)	0.21274(4)	0.21153(3)
S	0.43536(7)	0.32915(6)	0.26796(5)
Р	0.81408(6)	0.29505(5)	0.68324(4)
O(1)	0.4987(3)	-0.0457(2)	0.3836(2)
O(2)	0.2421(2)	0.2355(2)	0.4947(2)
O(3)	0.6784(2)	0.2041(2)	0.4635(2)
O(4)	0.0771(2)	0.2781(2)	0.2973(2)
O(5)	0.3296(3)	-0.0086(3)	0.1758(2)
O(6)	0.2862(3)	0.3021(3)	0.0315(2)
C(1)	0.5270(2)	0.2045(2)	0.2339(2)
C(2)	0.6683(3)	0.1770(2)	0.1937(2)
C(3)	0.6966(3)	0.0779(2)	0.1315(2)
C(4)	0.8446(4)	0.0499(3)	0.1036(3)
C(5)	0.8900(4)	0.1440(3)	0.0590(3)
C(6)	0.8683(3)	0.2335(3)	0.1237(3)
C(7)	0.7226(3)	0.2753(3)	0.1579(2)
C(8)	0.6726(4)	-0.0207(3)	0.1847(2)
C(9)	0.6152(4)	0.0929(3)	0.0474(2)
C(10)	0.7308(3)	0.3491(3)	0.2357(2)
C(11)	0.6417(4)	0.3428(3)	0.0847(2)
C(12)	0.4824(3)	0.0456(3)	0.3712(2)
C(13)	0.3250(3)	0.2182(2)	0.4409(2)
C(14)	0.5909(3)	0.1978(2)	0.4218(2)
C(15)	0.1785(3)	0.2519(3)	0.2625(2)
C(16)	0.3362(3)	0.0776(3)	0.1899(2)
C(17)	0.3092(3)	0.2658(3)	0.1023(2)
C(18)	0.9077(2)	0.3434(2)	0.7630(2)
C(19)	0.9728(3)	0.2719(2)	0.8277(2)
C(20)	1.0407(3)	0.3090(3)	0.8924(2)
C(21)	1.0427(3)	0.4163(3)	0.8923(2)
C(22)	0.9776(3)	0.4875(3)	0.8287(2)
C(23)	0.9106(3)	0.4507(2)	0.7629(2)
C(24)	0.8988(3)	0.1601(2)	0.6568(2)
C(25)	1.0342(3)	0.1366(2)	0.6378(2)
C(26)	1.0990(3)	0.0332(3)	0.6143(2)
C(27)	1.0319(3)	-0.0457(3)	0.6099(2)
C(28)	0.8991(4)	-0.0228(3)	0.6277(2)
C(29)	0.8317(3)	0.0792(2)	0.6515(2)
C(30)	0.7973(3)	0.3796(2)	0.5844(2)
C(31)	0.6842(3)	0.4612(2)	0.5734(2)
C(32)	0.6723(4)	0.5261(3)	0.4969(2)
C(33)	0.7701(4)	0.5102(3)	0.4316(2)
C(34)	0.8822(4)	0.4310(3)	0.4428(2)
C(35)	0.8956(3)	0.3643(3)	0.5182(2)
C(36)	0.6526(3)	0.2999(2)	0.7313(2)
C(37)	0.5588(3)	0.2725(2)	0.6798(2)
C(38)	0.4356(3)	0.2746(3)	0.7173(2)
C(39)	0.4057(3)	0.3052(3)	0.8038(2)
C(40)	0.4967(3)	0.3352(3)	0.8541(2)
C(41)	0.6218(3)	0.3317(3)	0.8180(2)
H(1)	0.721(2)	0.149(2)	0.245(2)

Tabelle 2

8	Brief (1999)	,	
Fe(1)-Fe(2)	254.6(1)	C(1)-Fe(1)	199.9(2)
Fe(1)-S	220.7(1)	C(1)-Fe(2)	198.9(2)
Fe(2)-S	220.0(1)	C(1)–S	173.7(3)
Fe(1)-C(12)	176.4(3)	Fe(2)-C(15)	178.5(3)
Fe(1)C(13)	180.0(3)	Fe(2)-C(16)	178.0(4)
Fe(1) - C(14)	176.3(3)	Fe(2) - C(17)	176.1(4)
C(1)–C(2)	153.9(3)	C(4)–C(5)	152.0(5)
C(2) - C(3)	156.6(4)	C(5)-C(6)	150.0(5)
C(2) - C(7)	156.8(4)	C(6)-C(7)	156.3(4)
C(3) - C(4)	154.9(4)	C(2) - H(1)	97.7(25)
P-C(Mittelwert)	179.5(3)		
S-Fe(1)-Fe(2)	54.6(1)	C(13)-Fe(1)-C(1)	149.4(1)
C(1) - Fe(1) - Fe(2)	50.1(1)	C(13)-Fe(1)-C(12)	95.7(1)
C(1) - Fe(1) - S	48.5(1)	C(14) - Fe(1) - Fe(2)	150.2(1)
C(12)-Fe(1)-Fe(2)	98.8(1)	C(14)-Fe(1)-S	101.6(1)
C(12) - Fe(1) - S	148.4(1)	C(14)-Fe(1)-C(1)	101.5(1)
C(12)-Fe(1)-C(1)	102.6(1)	C(14)-Fe(1)-C(12)	96.4(1)
C(13) - Fe(1) - Fe(2)	103.3(1)	C(14) - Fe(1) - C(13)	100.5(1)
C(13)-Fe(1)-S	106.2(1)		
S-Fe(2)-Fe(1)	54.8(1)	C(16)-Fe(2)-C(1)	103.9(1)
C(1) - Fe(2) - Fe(1)	50.5(1)	C(16)-Fe(2)-C(15)	97.3(1)
C(1)-Fe(2)-S	48.7(1)	C(17) - Fe(2) - Fe(1)	154.3(1)
C(15)-Fe(2)-Fe(1)	94.8(1)	C(17)-Fe(2)-S	101.8(1)
C(15) - Fe(2) - S	101.0(1)	C(17)-Fe(2)-C(1)	107.4(1)
C(15)-Fe(2)-C(1)	141.8(1)	C(17)-Fe(2)-C(15)	100.9(1)
C(16) - Fe(2) - Fe(1)	100.7(1)	C(17)-Fe(2)-C(16)	97.4(1)
C(16) - Fe(2) - S	150.3(1)		
C(1) - S - Fe(1)	59.5(1)	Fe(1)-S-Fe(2)	70.6(1)
C(1)-S-Fe(2)	59.3(1)		
Fe(1)-C(1)-Fe(2)	79.4(1)	C(2)-C(1)-Fe(1)	131.1(2)
S-C(1)-Fe(1)	72.0(1)	C(2) - C(1) - Fe(2)	145.2(2)
S-C(1)-Fe(2)	72.0(1)	C(2)-C(1)-S	127.6(2)
Fe-C-O	177.0(3)-179.3(3)	C-P-C	108.1(1)-111.3(1)

Aussewählte Bindungslängen (pm) und -Winkel (°) von 3a

zur Ausgangsverbindung **2** sind die Fe-C(1)-Bindungen nahezu gleich lang (199.9(2) und 198.9(2) pm). Beim Komplex **2** betragen die Bindungslängen Fe-C(1) dagegen 206.4(9) und 193.8(10) pm [3], unterscheiden sich also um 12.6 pm. Im neutralen Gold-Thioacyl-Komplex **7**, der von uns vor einiger Zeit röntgenographisch untersucht worden ist, liegen, wie im hier beschriebenen Komplex **3**, mit 201(3) und 202(2) gleich lange Fe-C(1)-Bindungen vor [4]. Der Fe-Fe-Abstand ist mit 254.6(2) pm gegenüber dem von Komplex **2** (251.8(2) pm) etwas aufgeweitet, im Vergleich zur Verbindung **7** (264.8(4) pm), wo diese Bindung durch ein Goldatom überbrückt ist, jedoch deutlich kürzer. Alle anderen Abstände im Tetraeder sind in **3a** und **7** gleich lang. Mit 173.7(2) pm ist die S-C(1)-Bindungslänge übereinstimmend mit der im neutralen Osmium-Thioacyl-Komplex [Os(SCPh)(O₂CCF₃)(CO)(PPh₃)₂] (176(4) pm) [7]. Im von uns vor einiger Zeit beschriebenen einkernigen, kationischen Cobalt-Thioacyl-Komplex [Co(C₁₀H₁₉S)(PMe₃)(C₅H₅)]⁺ ist dagegen die S-C-Bindung deutlich kürzer (162.9(3) pm) und hat dort Doppelbindungscharakter [8]. Die

Fig. 1. SCHAKAL-Zeichnung von 3a.

Anordnung der CO-Gruppen an den Eisenatomen ist ähnlich wie im Thioketen-Cluster 2. Auffällig ist die exakt verdeckte Stellung von je zwei CO-Liganden. Durch die Addition des Hydridions an C(2) hat sich der C(1)-C(2)-Bindungsabstand von 136.1(14) pm in 2 auf 153.9(3) pm vergrössert und hat damit erwartungsgemäss den Wert einer normalen C-C-Einfachbindung. Wie in den Komplexcn 2 und 7 liegt der Cyclohexanring in der Sesselkonformation vor.

(b) $[Fe_2(C_{11}H_{19}S)(CO)_4(NO)PPh_3]$ (5)

Geeignete Kristalle wurden durch Abkühlen einer Lösung der Substanz in Hexan auf 0°C erhalten.

Kristalldaten. $C_{33}H_{34}Fe_2NO_5PS$; Kristallgrösse $0.6 \times 0.25 \times 0.13$ mm³; triklin, *P* $\overline{1}$, *a* 913.0(3), *b* 1874.6(6), *c* 2083.3(9) pm, *a* 110.98(3), *β* 90.32(3), *γ* 91.82(2)°, *V* 3566(3) × 10⁶ pm³, *Z* = 4, *d*(ber.) 1.30 g cm⁻³, lin. Absorptionskoeff. *µ* 9.6 cm⁻¹.

Da nur Zwillingskristalle erhalten werden konnten, wurden die Reflexe von

242

Tabelle 3

Atomkoordinaten von 5

Atom	x/a	y/b	z/c
Molekül I			
Fe(11)	0.47164(15)	0.28253(7)	0.93751(6)
Fe(12)	0.57200(16)	0.20548(8)	1.00769(7)
S(1)	0.3410(3)	0.2413(1)	1.0090(1)
P(1)	0.3041(3)	0.2292(1)	0.8517(1)
O(11)	0.5354(9)	0.4286(4)	0.9321(4)
O(12)	0.7016(9)	0.1916(5)	0.8541(4)
O(13)	0.8884(9)	0.2363(5)	1.0081(4)
O(14)	0.5819(10)	0.1671(5)	1.1317(4)
0(15)	0.5796(11)	0.0410(5)	0.9205(5)
C(11)	0.4851(9)	0.3070(5)	10397(4)
C(12)	0.4847(9)	0.3864(5)	1.0971(4)
C(13)	0.3553(11)	0.3983(5)	1 1502(5)
C(14)	0.3700(13)	0.3903(3)	1 2027(5)
C(14)	0.5715(12)	0.5045(6)	1.2027(5)
C(16)	0.5213(12) 0.6307(11)	0.4984(5)	1 1822(5)
C(10)	0.6307(11)	0.4704(3)	1.1022(3)
C(17)	0.0412(11)	0.4170(5)	1.1407(3)
C(10)	0.3511(11)	0.3336(0)	1.1071(3)
C(19)	0.2037(10)	0.3946(6)	1.1143(5)
C(110)	0.7430(11)	0.4220(6)	1.0709(5)
C(11)	0.7140(10)	0.3655(5)	1.1648(5)
C(112)	0.1427(11)	0.2875(6)	0.8575(5)
C(113)	0.11/9(13)	0.3466(6)	0.9182(6)
C(114)	-0.0043(17)	0.3901(7)	0.9238(8)
C(115)	-0.0992(15)	0.3763(9)	0.8710(9)
C(116)	-0.0/45(14)	0.3185(9)	0.8108(7)
C(117)	0.0446(14)	0.2715(7)	0.8033(6)
C(118)	0.3637(10)	0.2122(5)	0.7646(5)
C(119)	0.2996(12)	0.1555(6)	0.7073(5)
C(120)	0.3408(14)	0.1484(7)	0.6421(5)
C(121)	0.4468(17)	0.1981(9)	0.6330(7)
C(122)	0.5101(14)	0.2537(8)	0.6887(8)
C(123)	0.4702(12)	0.2604(6)	0.7544(6)
C(124)	0.2297(12)	0.1377(5)	0.8496(4)
C(125)	0.0945(12)	0.1301(6)	0.8763(5)
C(126)	0.0486(15)	0.0601(8)	0.8799(7)
C(127)	0.1386(19)	-0.0010(8)	0.8583(7)
C(128)	0.2688(18)	0.0057(6)	0.8301(7)
C(129)	0.3181(12)	0.0754(6)	0.8254(5)
N(1)	0.5040(9)	0.3688(5)	0.9362(4)
C(130)	0.6138(12)	0.2230(6)	0.8923(5)
C(131)	0.7646(13)	0.2238(6)	1.0077(5)
C(132)	0.5771(11)	0.1841(5)	1.0827(6)
C(133)	0.5760(14)	0.1051(7)	0.9518(6)
Molekül II			
Fe(21)	0.02706(14)	0.23236(7)	0.39898(6)
Fe(22)	-0.05694(17)	0.17060(7)	0.48561(7)
S(2)	0.1692(3)	0.2165(1)	0.4808(1)
P(2)	0.1986(3)	0.1815(1)	0.3197(1)
O(21)	-0.0432(8)	0.3624(4)	0.3686(4)
O(22)	-0.1936(9)	0.1169(4)	0.3249(4)
O(23)	-0.3747(10)	0,1766(6)	0.4801(4)
$\dot{0}\dot{2}\dot{4}$	-0.0585(10)	0 1708(4)	0.6756(4)

Tabelle 3 (Fortsetzung)

Atom	x/a	y/b	z/c	
O(25)	-0.0349(14)	0.0034(5)	0.4194(5)	
C(21)	0.0215(9)	0.2741(5)	0.5021(4)	
C(22)	0.0177(9)	0.3597(4)	0.5485(4)	
C(23)	0.1444(10)	0.3875(5)	0.6038(4)	
C(24)	0.1262(11)	0.4741(5)	0.6451(5)	
C(25)	-0.0236(11)	0.4947(5)	0.6750(5)	
C(26)	-0.1332(11)	0.4718(5)	0.6158(5)	
C(27)	-0.1408(11)	0.3866(5)	0.5739(5)	
C(28)	0.1527(12)	0.3425(5)	0.6521(5)	
C(29)	0.2941(11)	0.3841(6)	0.5687(5)	
C(210)	-0.2419(10)	0.3751(6)	0.5115(5)	
C(211)	-0.2127(11)	0.3445(5)	0.6187(5)	
C(212)	0.3631(10)	0.2431(6)	0.3317(5)	
C(213)	0.3542(12)	0.3197(7)	0.3728(5)	
C(214)	0.4724(13)	0.3717(7)	0.3796(6)	
C(215)	0.5972(13)	0.3461(7)	0.3462(6)	
C(216)	0.6096(12)	0.2697(8)	0.3044(6)	
C(217)	0.4906(12)	0.2197(6)	0.2983(5)	
C(218)	0.1475(9)	0.1659(5)	0.2303(4)	
C(219)	0.2267(10)	0.1178(5)	0.1762(5)	
C(220)	0.1943(12)	0.1106(6)	0.1092(5)	
C(221)	0.0859(12)	0.1515(6)	0.0953(5)	
C(222)	0.0092(12)	0.2008(6)	0.1491(5)	
C(223)	0.0373(10)	0.2070(5)	0.2162(5)	
C(224)	0.2595(10)	0.0904(5)	0.3181(4)	
C(225)	0.3812(12)	0.0828(7)	0.3522(6)	
C(226)	0.4182(16)	0.0125(8)	0.3525(7)	
C(227)	0.3299(15)	-0.0523(7)	0.3168(7)	
C(228)	0.2086(14)	- 0.0451(6)	0.2839(6)	
C(229)	0.1699(12)	0.0254(6)	0.2821(5)	
N(2)	-0.0116(8)	0.3104(4)	0.3844(4)	
C(230)	-0.1060(13)	0.1576(5)	0.3587(5)	
C(231)	-0.2490(15)	0.1752(6)	0.4836(5)	
C(232)	-0.0567(13)	0.1710(6)	0.5694(6)	
C(233)	-0.0433(16)	0.0676(7)	0.4431(6)	

einem Zwillingsindividuum vermessen (Bereich 5° < 2θ < 44°; Mo- K_{α} -Strahlung, Graphitmonochromator, $\theta/2\theta$ -Scan). Die Lagen der Schweratome Fe, S und P wurden durch Anwendung direkter Methoden erhalten (Programm SHELXS [9]). Die Koordinaten der leichteren Atome C, N und O wurden nachfolgenden Differenz-Fourier-Synthesen entnommen. Die Lagen der H-Atome wurden berechnet (C-H-Abstand 108 pm; gemeinsamer, isotroper Temperaturfaktor U = 0.075). Die Koordinaten aller übrigen Atome wurden unter Zugrundelegung anisotroper Temperaturfaktoren verfeinert. Dabei wurden die abschliessenden LSQ-Rechnungen nur mit den 4921 signifikanten Reflexen durchgeführt. Als signifikant wurden Reflexe angesehen, bei denen $|F_0| > 4\sigma(|F_0|)$ und für die $|F_0| < 1.3 |F_c|$ war. Dadurch, dass die Datensammlung an einem Zwillingskristall durchgeführt wurde, fallen gelegentlich zwei Reflexe aufeinander, so dass dann eine zu hohe Intensität registriert wird. Deshalb wurden alle beobachteten Strukturamplituden $|F_0|$, die das 1.3-fache der berechneten Werte $|F_c|$ überstiegen, vor der letzten LSQ-Verfeinerung aussortiert (98 Reflexe). Es ergab sich ein abschliessender *R*-Wert von 0.065 ($R_w = 0.060$; Gewichtung $w = (\sigma_F^2 + 0.0008 \cdot F^2)^{-1}$; Programmsystem SHELX [5]). Die Atomkoordinaten, ausgewählte Bindungslängen und -winkel finden sich in

Tabelle	4
---------	---

5

Atome	Molekül 1		Molekül 2, bzw. Mittelwert
Fe(1)-Fe(2)		257.8(1)	
C(1)-Fe(1)		201.0(6)	
C(1)-Fe(2)		196.4(8)	
C(1)-S		172.0(7)	
Fe(1)-S		224.4(2)	
Fe(2)–S		223.0(2)	
Fe(1)-C(30)		178.3(8)	
Fe(1)-N		164.5(7)	
Fe(1)-P	226.5(3)		225.5(3)
Fe(2)-C(30)	257.0(12)		260.1(11)
Fe(2)-C(31)		177.0(11)	
Fe(2)-C(32)		174.6(10)	
Fe(2)-C(33)		182.4(9)	
N-O(1)		117.9(9)	
C(30)-O(2)		114.3(9)	
C(31)-O(3)		115.0(12)	
C(32)-O(4)		117.3(12)	
C(33)–O(5)		113.9(11)	
S-Fe(1)-Fe(2)		54.6(1)	
C(1)-Fe(1)-Fe(2)		48.8(2)	
C(1) - Fe(1) - S		47.3(2)	
P-Fe(1)-Fe(2)	120.8(1)		122.7(1)
N-Fe(1)-Fe(2)		135.3(2)	
C(30)-Fe(1)-Fe(2)	69.5(4)		70.6(4)
S-Fe(2)-Fe(1)		55.1(1)	
C(1) - Fe(2) - Fe(1)		50.4(2)	
C(1)-Fe(2)-S		47.9(2)	
C(30)-Fe(2)-Fe(1)		40.4(2)	
C(31)-Fe(2)-Fe(1)	102.4(4)		103.4(4)
C(32)-Fe(2)-Fe(1)	150.7(3)		149.4(3)
C(33)-Fe(2)-Fe(1)	108.5(4)		107.0(4)
C(1)-S-Fe(1)		59.2(2)	
C(1)-S-Fe(2)		57.9(2)	
Fe(1)-S-Fe(2)		70.4(1)	
Fe(1)-C(1)-Fe(2)		80.9(3)	
S-C(1)-Fe(1)		73.5(3)	
S-C(1)-Fe(2)		73.2(3)	
C(2)-C(1)-Fe(1)	127.6(7)		126.1(7)
C(2)-C(1)-Fe(2)		145.8(5)	
C(2)-C(1)-S		128.6(4)	
O(1)-N-Fe(1)		174.8(6)	
O(2)-C(30)-Fe(1)		167.7(9)	
O(2)-C(30)-Fe(2)		123.0(7)	
O(3)-C(31)-Fe(2)		177.6(8)	
O(4)-C(32)-Fe(2)		178.3(8)	
O(5)-C(33)-Fe(2)		176.4(9)	

Fig. 2. SCHAKAL-Zeichnung von 5.

Tabelle 3 und 4; Figur 2 zeight eine SCHAKAL-Zeichnung des Komplexes mit Angabe der Atomnumerierung [6].

Die asymmetrische Einheit besteht aus zwei Molekülen. Wo Bindungslängen und -winkel der beiden Moleküle im Rahmen der Standardabweichungen übereinstimmen, wurde der Mittelwert aus beiden Einzelwerten gebildet. Da die Reaktanden NO⁺ und PPh₃ je eine CO-Gruppe von Komplex 3 substituieren, bleibt die tetraedrische Anordnung der Atome Fe(1), Fe(2), S und C(1) erhalten. Durch die unterschiedliche Substitution an beiden Eisenatomen ist das Tetraeder jedoch gegenüber 3a verzerrt: Die Fe(2)-C(1)- und die S-C(1)-Bindungen sind verkürzt, alle anderen Abstände verlängert. Die beiden Fe-C(1)-Bindungen weisen eine Längendifferenz von 4.6 pm auf. Die zwei gegenüber 3a neu eingeführten Liganden NO⁺ und PPh₃ sind beide am selben Eisenatom koordiniert. Bemerkenswert ist, dass die an Fe(1) verbliebene CO-Gruppe halbverbrückend ist. Dies geht aus dem Fe(1)-C(30)-O(2)-Winkel von 167.7(9)° und dem Fe(2)-C(30)-Abstand von 257.0(12) pm hervor. Ausserdem steht diese CO-Gruppe auf Lücke zu den C(31)-O(3)- und C(32)-O(4)-Gruppen an Fe(2), während bei 3a jeweils zwei CO-Gruppen auf Deckung stehen. Wie in den Komplexen 2, 3a und 7 liegt der Cyclohexanring in der Sesselkonformation vor. Die Phenylringe des PPh₃-Liganden sind planar (Programm PARST7 [10]).

Experimenteller Teil

Die Ausgangskomplexe 2 und 3a wurden nach [2,3] synthetisiert. Alle Arbeiten wurden unter N₂-Schutz durchgeführt. Die Lösungsmittel waren getrocknet, und N₂-gesättigt. IR-Spektren: Perkin-Elmer 325; ¹H-, ³¹P- und ¹³C-NMR-Spektren: Bruker WP-80; Röntgen: Syntex P21. Für die Strukturbestimmungen wurden die Kristalle unter Stickstoff in Lindemann-Röhrchen eingeschmolzen.

(a) Synthese von $NEt_{4}[Fe_{2}(C_{11}H_{19}S)(CO)_{6}]$ (3b)

Zu einer schwarzbraunen Lösung von 4.0 g (8.7 mmol) $[Fe_2(C_{11}H_{18}S)(CO)_6]$ (2) in 350 ml Methanol gibt man bei – 10 bis –15°C über 1 h verteilt insgesamt 0.8 g (21.1 mmol) NaBH₄. Danach lässt man noch 2 h bei 20°C rühren. Nach Zugabe von 350 ml Wasser wird die Lösung dreimal mit je 150 ml Petrolether extrahiert, um Ausgangs- und Nebenprodukte zu entfernen. Zu der orange-farbenen Wasser/-Methanol-Phase gibt man eine Lösung von 1.6 g (9.7 mmol) NEt₄+Cl⁻ in 15 ml Methanol. Dabei fällt sofort ein kräftig gelber Niederschlag von 3b aus, der zweimal mit je 20 ml Methanol/Wasser (1/1) gewaschen und im Vakuum getrocknet wird. Zur weiteren Reinigung kann aus Chloroform umkristallisiert werden.

Eigenschaften: Orange-farbene Kristalle, löslich in Methanol und Dichlormethan, mässig löslich in Chloroform, unlöslich in Hexan und Wasser; Ausbeute 2.7 g (53%); Schmp. 142–145°C (Zers.).

IR (KBr): ν (CO) 2020s, 1955vs, 1920s, 1895vs cm⁻¹. ¹H-NMR (CDCl₃): Thioacyl-Ligand: 1.08 (s, 2CH₃), 1.23 (s, 2CH₃), Signale der CH₂-Gruppen durch Resonanzen der CH₃-Gruppen des NEt₄⁺-Ions verdeckt, 2.74 (s, C(2)-H); NEt₄⁺-Ion: 1.27–1.50 (m, 4CH₃), 3.13–3.40 (q, 4CH₂) ppm. ¹³C-NMR (CDCl₃; PPh₄⁺-Salz): Thioacyl-Ligand: 108.8 (C(1)), 64.2 (C(2)), 45.1, 36.4, 35.0, 21.6, 18.9; CO: 217.1; PPh₄⁺-Ion: 117.3 (d, *J* 90 Hz), 134.1 (d, *J* 10 Hz), 131.3 (d, *J* 12 Hz), 136.3 ppm. Analyse: Gef.: C, 50.9; H, 6.6; N, 2.4. C₂₅H₃₉Fe₂NO₆S (593.4) ber.: C, 50.6; H, 6.6; N, 2.4%.

(b) Synthese von $[Fe_2(C_{11}H_{10}S)(CO)_5NO]$ (4)

Zu einer Lösung von 1.76 g (3.0 mmol) NEt₄[Fe₂(C₁₁H₁₉S)(CO)₆] (**3b**) in 150 ml Dichlormethan werden langsam 0.36 g (3.1 mmol) NO⁺BF₄⁻ gegeben und 3 h bei 20 °C gerührt. Danach wird das Lösungsmittel abgezogen und der Rückstand viermal mit je 15 ml Hexan extrahiert. Die eingeengte Lösung wird an Kieselgel chromatographiert (Laufmittel: Hexan). Die erste, braune Zone wird aufgefangen, zur Trockne eingedampft und der feste Rückstand 10 h im Vakuum getrocknet. Setzt man anstelle des Ammoniumsalzes **3b** das Phosphoniumsalz **3a** ein, so erhält man **4** nur in Form eines leicht verunreinigten Öls in schlechterer Ausbeute.

Eigenschaften: Brauner Feststoff, sehr gut löslich in Hexan, Chloroform und Dichlormethan; Ausbeute 0.48 g (34%); Schmp. 44°C.

IR (KBr): ν (CO) 2080vs, 2045vs, 1983vs; ν (NO) 1775s cm⁻¹. ¹H-NMR (CDCl₃): 1.03 (s, CH₃), 1.16 (s, CH₃), 1.25 (s, CH₃), 1.28 (s, CH₃), 1.25–1.68 (m, CH₂), 2.61 (s, C(2)-H) ppm. ¹³C-NMR (CDCl₃): 136.7 (C(1)), 65.4 (C(2)), 44.6, 44.2, 37.8, 36.1, 34.8, 33.7, 21.6, 21.5, 18.7; 215.5 (1CO), 209.6 (3CO), 208.4 (1CO) ppm.

(c) Synthese von $[Fe_2(C_{11}H_{19}S)(CO)_4(NO)(PPh_3)]$ (5)

Zu einer Lösung von 0.35 g (0.75 mmol) $[Fe_2(C_{11}H_{19}S)(CO)_5NO]$ (4) in 50 ml Hexan werden 0.21 g (0.80 mmol) PPh₃ gegeben und 2 h auf 50-60°C erwärmt. Die eingeengte Lösung wird an Kieselgel chromatographiert (Laufmittel: Toluol/Hexan 1/1). Als erste Zone läuft die Ausgangsverbindung 4. Die zweite braune Zone enthält den Komplex 5, der aus Hexan umkristallisiert wird.

Eigenschaften: Schwarze Kristalle, gut löslich in Toluol und Chloroform, mässig löslich in Hexan; Ausbeute 0.30 g (57%); Schmp. 133°C (Zers.).

IR (KBr): ν (CO) 2055vs, 1975vs; 1875m (halbverbr.); ν (NO) 1719s cm⁻¹. ¹H-NMR (CDCl₃): 1.11 (s, CH₃), 1.23 (s, CH₃), 1.34 (s, CH₃), 1.38 (s, CH₃), 1.34–1.56 (m, CH₂), 3.23 (d, 4.7 Hz, C(2)-H); 7.32–7.62 (m, Ph) ppm. 13 C-NMR (CDCl₃): Thioacyl-Ligand: 144.6 (d, *J* 13 Hz), C(1)), 66.0 (C(2)), 45.2, 44.4, 38.0, 36.3, 35.1, 32.8, 22.1, 21.7, 18.8; CO: 227.8 (d, *J* 14 Hz, halbverbr. 1CO), 208.4 (breit, 3CO); PPh₃-Ligand: 133.6 (d, *J* 43 Hz), 133.3 (d, *J* 11 Hz), 128.7 (d, *J* 10 Hz), 130.6 (d, *J* 2 Hz) ppm. Analyse: Gef.: C, 57.3; H, 5.1; N, 2.5. $C_{33}H_{34}Fe_2NO_5PS$ (699.4) ber.: C, 56.7; H, 4.9; N, 2.0%.

(d) Synthese von $[Fe_2(C_{11}H_{19}S)(CO)_3(NO)(dppm)]$ (6)

Zu einer Lösung von 0.2 g (0.43 mmol) $[Fe_2(C_{11}H_{19}S)(CO)_5NO]$ (4) in 10 ml Toluol wird eine Lösung von 0.2 g (0.52 mmol) $Ph_2PCH_2PPh_2$ (dppm) in 15 ml Toluol gegeben und 6 h auf 80°C erwärmt. Anschliessend wird an Kieselgel chromatographiert (Laufmittel: Toluol/Hexan 1/1). Nach einer braun-orangefarbenen, einer gelben und einer rosa-farbenen Zone läuft Komplex **6** als vierte, rotbraune Zone von der Säule. Die Lösung wird zur Trockne eingeengt, der Rückstand mit Hexan gewaschen und aus Dichlormethan/Hexan umkristallisiert.

Eigenschaften: Dunkelrotbraune feine Kristalle, gut löslich in Toluol und Chloroform, schlecht löslich in Hexan; Ausbeute 0.22 g (64%); Schmp. 180°C.

IR (KBr): ν (CO) 1977vs, 1920s; ν (NO) 1715s cm⁻¹. ¹H-NMR (CDCl₃): 1.14 (s, CH₃), 1.34 (s, CH₃), 1.37 (s, CH₃), 1.43 (s, CH₃), Signale der CH₂-Gruppen verdeckt, 2.81 (q, *J* 8.2 Hz), C(2)-H); 2.72 (m) und 3.54 (m) PCH₂P, 7.06–7.70 (m, Ph) ppm. Analyse: Gef.: C, 60.0; H, 5.3; N, 1.8; Fe, 13.4. C₃₉H₄₁Fe₂NO₄P₂S (793.5) ber.: C, 59.1; H, 5.2; N, 1.8; Fe, 14.1%.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- 1 T. Sielisch und U. Behrens, J. Organomet. Chem., 327 (1987) 85.
- 2 U. Behrens und F. Edelmann, J. Organomet. Chem., 118 (1976) C41.
- 3 H. Umland, F. Edelmann, D. Wormsbächer und U. Behrens, Angew. Chem., 95 (1983) 148; Angew. Chem. Suppl., (1983) 156.
- 4 H. Umland und U. Behrens, J. Organomet. Chem., 287 (1985) 109.
- 5 G.M. Sheldrick, SHELX: Programs for Crystal Structure Determination, Cambridge 1975.
- 6 E. Keller, SCHAKAL: Ein Fortran-Programm für die graphische Darstellung von Molekülmodellen, Freiburg 1981.
- 7 G.R. Clark, T.J. Collins, K. Marsden und W.R. Roper, J. Organomet. Chem., 157 (1978) C23.
- 8 R. Drews, F. Edelmann und U. Behrens, J. Organomet. Chem., 315 (1986) 369.
- 9 G.M. Sheldrick, SHELXS: Programs for Crystal Structure Solution, Göttingen 1984.
- 10 M. Nardelli, PARST7: Programs for Crystallographic Calculations, Parma 1981.